

PowerGen White Paper

Concepts and methodologies recommended
for using PowerGen to improve:

The Build ProcessThe Build ProcessThe Build ProcessThe Build Process
Source Traceable Builds for PowerBuilder Source Traceable Builds for PowerBuilder Source Traceable Builds for PowerBuilder Source Traceable Builds for PowerBuilder
Applications Applications Applications Applications
Synchronization of PowerBuilder Applications Synchronization of PowerBuilder Applications Synchronization of PowerBuilder Applications Synchronization of PowerBuilder Applications
to Source Controlto Source Controlto Source Controlto Source Control

Incorporating these methodologies will ensure that your build is
accurate, efficient, and repeatable, and that your application releases are
reproduced from a single source.

E. Crane ComputingE. Crane ComputingE. Crane ComputingE. Crane Computing
16 Centre Street
Concord, New Hampshire 03301
603-226-4041 http://www.ecrane.com

PowerGen White Paper

2

Concepts
PowerGen focuses on some of the unique problems facing PowerBuilder
development shops in managing releases and software configurations. These are
critical aspects of the PowerBuilder life cycle, since 70% of the cost of the
overall product development effort is applied to maintenance activities, of which
release management and configuration control are key elements.

The Build Process

The build process for PowerBuilder applications has similarities with those of
other development environments:

There is a regeneration stage in which PowerBuilder objects (and/or external
objects) are recompiled and replaced with the compiled form of the object’s
code. As objects are modified during the software development process,
regeneration helps make sure that all objects remain synchronized with the
changes.
There is a linking stage in which compiled PowerBuilder objects are
combined into deliverable components (EXE’s and PBD’s).
Order dependencies exist for both the regeneration and the linking
stages. For example, it is often necessary to regenerate one object before
another, or one component before another. This is especially important
for PowerBuilder objects that inherit behavior from their ancestors.
Ancestors must be regenerated before their descendants.

A given application may be delivered as a set of executables and dynamic
libraries, which share common code. Further, some components may
support programming interfaces that enable one to communicate with the
other.
Some components of the application may be acquired and are not
reproducible from the source.

 PowerGen White Paper

 3

PowerGen’s Consistent Build Process

A consistent, rigorous build process is essential. It gives developers a more
stable foundation, established by repeating the build as consistently and as often
as possible. It gives release managers the ability to maintain a certifiable
association of released software with the source from which it is built. And it
gives QA staff the assurance that the process is viable and provides a consistent
method for producing a quality software product.
PowerGen increases quality and productivity of the build through a variety of
unique automation features. It automatically regenerates all objects in
inheritance order, thereby eliminating both errors and time spent performing
this manually.

PowerGen’s build functions may all be run from the command line. This
enables you to script an entire build process and eliminate manual, error-
prone checklists.
PowerGen lets you specify a complete set of deliverable components in
the build. With PowerGen you can define a PowerBuilder project that
contains multiple executables. For each application you want to include,
you specify the executable(s) and the PowerBuilder dynamic libraries, if
any.
PowerGen produces a complete set of deliverable components from
source files.
PowerGen handles order dependencies of objects in both the
regeneration and linking stages. It automatically regenerates PowerBuilder
objects in “inheritance order” rather than library order.
PowerGen manages build resources as efficiently as possible. It lets you
exclude specified libraries from the regeneration, to avoid rebuilding third
party or common class libraries unnecessarily.
PowerGen provides an “Incremental Regeneration” capability that
reduces the time for build/debug cycles without compromising build
integrity.

PowerGen White Paper

4

PowerGen’s results are documented. It produces a detailed log file that
documents the results of the build. It lists all the objects that were
regenerated, all PBD’s and EXE’s created, regeneration and/or linking
errors, and the time and date for each object referenced.
PowerGen makes the build repeatable. Once you’ve defined a
PowerBuilder project with PowerGen, you can rebuild your application
simply and easily in a single step.
PowerGen eliminates the PowerBuilder-imposed limitations on importing
and exporting objects, letting you define a set of PowerBuilder objects to
export to one or multiple text files.

Source and Release Control

A source control system operates on individual files. When multiple developers
are working on a set of controlled source, it is beneficial if the source files are
small enough (in size and scope) so that two developers are not likely to want to
change the same source at the same time. When source files are large, one
developer must either wait for the other to complete changes or make changes
independent of the other and then merge the two sets of changes.
PowerBuilder is an object-oriented rapid application development environment.
PowerBuilder development is based on objects, or small blocks of code designed
for a single reusable purpose. One of the challenges for source control
implementers in PowerBuilder is that the source for individual objects is
embedded in PowerBuilder Libraries, PBL’s. PBL’s are typically quite large in
scope containing tens or even hundreds of individual objects. For the reasons
mentioned above, this organization makes it irrational to control PowerBuilder
source at the PBL level.
PowerBuilder does provide a mechanism for exporting individual objects to text
files. These individual objects suit the requirements of source control, but
create another problem. When the time comes to construct a new version of an
application, PowerBuilder provides no mechanism to create the required PBL’s
from the individual objects that have been controlled in the source control
system.

 PowerGen White Paper

 5

What is desired in practicing a good source control methodology is the ability to
re-create the application strictly from sources; to start with an empty directory
and a set of source objects and end up with a set of PBL’s that can be built into
the deliverables.

Source and Release Control Problems with PowerBuilder

By using PowerBuilder alone, it is not possible to recreate the application “from
the ground up” in the manner described above. You can use PowerBuilder to
import an individual object into a PBL, but because of the intricate dependencies
that exist between PowerBuilder objects, this import ability depends on other
objects already being part of the PBL. For example, if Object-A references
Object-B, Object-B must exist in the library before Object-A can be imported
(using PowerBuilder’s import function). If Object-B also references Object-A,
you’re in a catch-22 situation, because you can’t import either one due to their
cyclical references. This is a classic “Bootstrap problem” in that it presents
dependencies between operations that make it seem impossible to get started.

Source and Release Capabilities with PowerGen

PowerGen’s Bootstrap Import and its Synchronization functions solve the
inherent problem of source control with PowerBuilder. Through an iterative
process, PowerGen first imports objects from which the cross-dependencies
have been removed. In subsequent iterations, it imports more and more of the
body of the objects, until they have all been completely restored in the PBL’s.
This is a simplified explanation, since the dependencies are subtle and varied;
avoiding import errors requires an extensive analysis of these dependencies.

PowerGen White Paper

6

PowerGen’s Bootstrap Import and Synchronization functions eliminate a huge
gap in applying rigor to the source control process for PowerBuilder
applications.
Synchronization quickly and efficiently updates PBL’s to accurately reflect
object sources that are controlled in a source control system. In contrast to the
Bootstrap Import function, Synchronization selects only the source objects that
are different from the ones in the PBL’s and imports them.
The Bootstrap Import process also lets you perform other functions as well,
such as general cleanup of objects in your PBL’s and PBL migration.

A PowerGen Example

Here’s an example of how Creative Kids, a company that sells children’s toys
through catalog sales, uses PowerGen to increase the quality of their build,
improve source and release control, and enhance productivity at the same time.
Creative Kids has developed two PowerBuilder applications: one handling order
entry and the other handling customer records. Each application has its own
unique set of PowerBuilder libraries; both of these applications access a third-
party Class Framework library as well as a set of in-house Common Libraries.

Before implementing PowerGen, Creative Kids went through a labor-intensive
build process that required one to two man-days. Here’s what their weekly build
process involved:
Establish the “Build PBL’s”

1. Copy PBL’s from development directories
2. Check objects in PBL’s against objects in source control system to

ensure PBL’s represent a known set of source
3. Import updated objects into the correct PBL

 PowerGen White Paper

 7

Build the Order Entry Application

4. Open Project for application
5. Perform a full rebuild
6. Optimize the PBL’s
7. Copy EXE and PBD’s to the Test area
8. Test the application

Build the Customer Records Application

(Note: the steps for this application must be different than the above in order
for the common libraries to be shared between the two applications.)

9. In Library Painter Regenerate objects in Customer application PBL’s
10. Create the PBD’s and EXE for the Customer application
11. Optimize the PBL’s
12. Copy EXE and PBD’s to the Test area
13. Test the application

Test the Deliverables

14. Test all the deliverable components for both applications

Both developers and maintainers at Creative Kids became increasingly frustrated
at the large amount of manual work required, the number of errors occurring
during each build, and the time required for each release. They needed to do
something.... and decided to implement PowerGen.
Using PowerGen, Creative Kids’ build process improved significantly. Errors
occurring during each build were almost eliminated. And the time required per
build was reduced to that needed to schedule a nightly batch build process.
First, Creative Kids went through a step-by-step process of defining its
applications and putting associated data into PowerGen. Then they interactively
tested the applications to make sure the build worked as planned. Once the build
was working properly, the weekly 14-step process described above became a
single button click to activate PowerGen. Their build process became repeatable,
error-free, and documented. By using PowerGen’s Synchronization function
and Bootstrap Import function, Creative Kids was confident that its builds
could be traced to its source control system. And they saved labor days of time
each week as well.

PowerGen White Paper

8

Step-by-Step
This section describes the step-by-step methodologies recommended for

The Build Process
Source Traceable Builds for PowerBuilder Applications
Synchronization of PowerBuilder Applications to Source Control

Incorporating these methodologies will ensure that your build is accurate,
efficient, and repeatable, and that your application releases are reproduced from
a single source.

The Build Process: Step-by-Step

The recommended build process described here follows these steps:
Step 1: Define your applications and deliverable components
Step 2: Start PowerGen and create a new project
Step 3: Specify the applications in your PowerGen project
Step 4: Specify the executable path and support files
Step 5: Specify regeneration information
(Optional) Step 6: Specify any changes to code generation defaults
Step 7: Specify PBL information
Step 8: Specify build options and define log file preferences
Step 9: Save the project
Step 10: Test the build
Step 11: Test the resulting components

 PowerGen White Paper

 9

Step 1: Define Your Applications and Deliverable Components

A PowerGen Project is the collection of information about your PowerBuilder
applications that PowerGen needs to carry out its build tasks. This information
includes, in part, the names of the applications and their library lists.
Before you start PowerGen, define the complete set of delivered applications to be
included in your PowerBuilder project. You perform this step in PowerBuilder;
PowerGen will read this information when you create your PowerGen project.

Executable(s)

The executable is the main program for the application. Define at least one
executable per application. You are not restricted to a single executable with
PowerGen; define all you want included.

PowerBuilder Dynamic Libraries

When PowerBuilder builds a dynamic library, it copies the compiled
versions of all objects from the source library (PBL) into the dynamic
library (PBD). Your application may not include any dynamic libraries,
but if it does, define all those that you want included.
The inclusion or exclusion of dynamic libraries brings a host of pros and
cons that should be considered when defining your PowerBuilder project.

Few PBD’s

+ Easier installation
+ Easier packaging
+ Easier configuration control and support
- Low degree of modularity disadvantages both development

and maintenance
- Functions within the application(s) may be duplicated

Many PBD’s

+ High degree of modularity makes development and
maintenance easier

+ Functions can easily be shared between applications.
+ “Spot” updates possible
- Difficult installation
- Difficult packaging
- More difficult configuration control and support

PowerGen White Paper

10

Step 1 Example

Creative Kids has two applications – Order Entry and Customer Records—and
defines the following deliverable components for each of them. Notice that the
dynamic libraries in both the Class Framework library and in-house Common
libraries are shared between the Order Entry application and Customer Records
application.

Applications Executables Dynamic Libraries

Order Entry order.exe oe_main.pbd
oe_dlg.pbd
oe_data.pbd
oe_item.pbd
utils.pbd
com.pbd
tabfold.pbd
grid.pbd

Customer Records customer.exe cr_main.pbd
cr_data.pbd
cr_win.pbd
utils.pbd
com.pbd
tabfold.pbd
grid.pbd

 PowerGen White Paper

 11

Step 2: Start PowerGen and Create a New Project

The first time you start PowerGen, the program asks you to enter the full path
to the PB.INI file you want to reference for this project. In PB8 you will see a
list of defined Workspaces rather then being prompted for the PB.INI file. In
this example we will use the PB.INI as a source of application definitions.
Once you specify the PowerBuilder INI file, PowerGen displays a list of all the
applications it finds there, including the set of applications you identified in Step
1. Remember that this is a list of all applications in your INI file only and that
PowerGen projects can be created from a combination of four different sources
:

PB.INI file
PB Target (PB 8 only)
PB Workspace (PB8 only)
Application PBL

When a source is selected, PowerGen presents a list of applications available
from that source. You may change sources to pick applications from different
sources to be part of your PowerGen project. In Step 2 you will do that -- those
applications you defined in Step 1 from the appropriate sources.

Step 2 Example

The following PowerGen screen shows all of Creative Kid’s applications,
including the two applications Creative Kids defined in Step 1. Note that each
application is shown with its library list (the set of PBL’s from which the
application will be derived). The list of PBL’s displayed in the Library List box
depends on the application currently highlighted in the Applications box.

PowerGen White Paper

12

At this point, no applications are listed in the bottom part of the window,
because no applications have been added to the project yet. That will happen in
Step 3.

 PowerGen White Paper

 13

Step 3: Specify the Applications in Your PowerGen Project and Save the
Project

Now you need to specify the applications you want included in your PowerGen
project. PowerGen will build these applications in the order it sees in this project
list. Once you’ve specified the applications, you need to save the project, giving
it an appropriate file name and saving it to the directory containing the
application PBL.

Add Applications

The Select Applications for Project dialog box lists all the applications in the last
source you had specified.
If you need to select a different source, click the appropriate PB.INI, PBL,
Target, or Workspace button and browse to locate the application source.
Regardless of the source, to add an application to your PowerGen project,
simply highlight it in the Available Applications area and click the Add button.
The selected application will appear in the Applications in Project area. Note
that within a selected application, PowerGen will always build things in the
correct order automatically. When you’re finished adding applications, the
application list at the bottom of the screen should match the list of applications
you defined in Step 1. When the Applications in Project list is complete and in
the appropriate order, click OK .

Save the Project

The main PowerGen window for the project appears. PowerGen automatically
assigns a project name with a GEN extension to each new project (Power1.gen,
for example). It is recommended that you specify an appropriate name for your
project and then save it into the same directory as the application PBL.
To save the project with an appropriate name, click the Save button or choose
Project → Save. The Save As dialog appears, where you can give the project a name
with a GEN extension and browse to locate the file in the same directory as the
application PBL. Then click OK to save the project information.

PowerGen White Paper

14

Step 3 Example

The source for both of the Creative Kids applications is in the PB.INI. Creative
Kids adds the Order and Customer applications to the PowerGen project.

Once they click OK, the main PowerGen window for their project opens,
displaying the two selected applications and appropriate libraries for each
application.

 PowerGen White Paper

 15

Since Creative Kids does not want the assigned Power1 file name for their
project, they click the Save button and name their project creative.gen, and save
it into the same directory as the application PBL.

PowerGen White Paper

16

Step 4: Specify the Executable Path and Support Files

For each application you’ve included, specify a path to the executable file name
(EXE) and, optionally, a path to an icon file name and a PowerBuilder resource
(PBR) file name.
An icon file holds the picture that will be shown in Windows to indicate its
presence in a group or to show that the application is open (running) but in a
minimized window. (Note that the icon must be specified here to be part of the
EXE, even if it has already been assigned to the Application Object. This is a
requirement of the ORCA interface.) A PBR lists all dynamically assigned
resources in an application, letting PowerBuilder include them in the dynamic
library when it builds it.
If you want to browse through the directories to locate the executable, icon file,
or PBR file, click its corresponding Browse button. You’ll see a list of all your
directories and files. When you’ve found the file you’re looking for, click on it
in the list and it will appear in the appropriate PowerGen field.

Step 4 Example

The named project, creative.gen, appears in the Window title area and the two
applications Creative Kids specified in Step 3 are still listed in the Applications
box of the PowerGen window.

 PowerGen White Paper

 17

Creative Kids uses the Options button to open the Application Build Settings
dialog box and set File Specifications for the Order application.

They use the Browse button to specify the path and name of the executable file
in the EXE Path text box and the executable support files in the other text boxes.
Creative Kids keeps the PBD’s for the Order application in the default directory
(which is the directory where the PBL is located).
Creative Kids would then specify a path to the executable for the Customer
application as well.

PowerGen White Paper

18

Step 5: Specify Regeneration Information

You can specify object regeneration information for an entire project, or on an
application-by-application basis.

To specify object regeneration information at the project level, you
would choose Options → Project... and then click on the Regeneration
folder and choose the appropriate options.
If you are specifying object regeneration information at the application
level, you do so after specifying the executable path. Because the
Application Build Settings dialog box is still open, you simply click on
the Regeneration folder and then choose the appropriate options.

You can specify whether you want PowerGen to perform an incremental
regeneration on the objects in the referenced libraries, which objects PowerGen
should target for regeneration, and whether to export objects after regenerating
them.
Defaults:

PowerGen’s default settings for regeneration information are explained below.
We recommend using all default settings except for the last one listed – regenerating
duplicate objects.

Full regeneration. PowerGen does not perform an incremental regeneration
unless you specify otherwise. Use a full regeneration to be sure that the
deliverables represent the exact state of each object in each library.
Use incremental regeneration to integrate changes made by developers in
the course of producing interim releases that are intended to keep object
modification in sync. If you select incremental regeneration, you may skip
PBD creation if none of the objects in the library have been regenerated
and/or choose to regenerate objects that use changed objects as variables.
Regenerate all objects in all referenced libraries. PowerGen regenerates
all objects in all of the referenced libraries for the selected application unless
you specify otherwise. If you have multiple applications in a single library
and want PowerGen to regenerate only those objects referenced by the
current application, it would be appropriate to choose the alternate option.

 PowerGen White Paper

 19

Regenerate Duplicate Objects. PowerGen will regenerate duplicate
objects unless otherwise specified. This default exists to make PowerGen
V4.2 compatible with previous versions of the product. However,
regenerating duplicate objects will increase build time. Unless you need to
maintain consistency with a previous version of PowerGen, we recommend
that you choose NOT to regenerate duplicate objects.

Step 5 Example

This screen shows the Regeneration folder at the Application Build Settings
dialog box:

Creative Kids is specifying a full regeneration for the Order application and
regenerating all objects in all of the referenced libraries for the Order
application. They have chosen not to regenerate duplicate objects.

PowerGen White Paper

20

Step 6 (Optional): Specify Any Changes to Code Generation Defaults

PowerGen’s code generation defaults (the type of p-code and machine code)
have been carefully selected based on the vast majority of PowerBuilder
development projects. In this step, you’re not selecting whether to use p-code
or machine code (you’ll do that in Step 8, when specifying PBL information);
rather, you’re setting what type of p-code and machine code you’ll use in your
project and/or application. In almost all cases you will keep PowerGen’s code
generation defaults and skip this step.
Note that there may be only one form of machine code generation and one form
of p-code generation for the whole application. For example, if you select the
machine code to be optimized for speed, that setting will apply to all machine
code deliverables.
If you need to make changes to the defaults:

To change code generation defaults at the project level, you would
choose Options → Project... and then click on the Code Generation folder
and choose the appropriate options.
If you are changing code generation defaults at the application level, you
do so after specifying the executable path. Because the Application Build
Settings dialog box is still open, you simply click on the Code
Generation folder and then choose the appropriate options.

Regeneration Options & Defaults

PB Version Code Formats Options

Version 5.0 32-bit p-code
16-bit machine code no optimization
32-bit machine code no optimization (default)

Version 6.X 16-bit p-code
32-bit p-code (default)
16-bit machine code no optimization
32-bit machine code no optimization (default)

Version 7.0 32-bit p-code
32-bit machine code no optimization (default)

Version 8.0 32-bit p-code
32-bit machine code no optimization (default)

 PowerGen White Paper

 21

When specifying the type of machine code output, the default is not to
optimize. If you change the defaults, you may optimize for speed or for size.
For machine code output, you may also choose to set the Trace Information
option if you intend to trace program execution (by using the /debug command
line argument with your application). Set the Error Context option to display
information about the specific object, event, and script line number in your
application when a runtime error occurs.

Step 6 Example

Creative Kids skips this step in the process. The screen below shows the Code
Generation folder at the Application Build Settings dialog box. Because
Creative Kids is using PowerBuilder Version 7.0, their default options are 32-bit
for p-code and 32-bit for machine code, with no optimization.

PowerGen White Paper

22

Step 7: Specify PBL Information

For each PBL or PBD included in each application’s library list, specify the
following:

Whether or not you want the library objects regenerated when the
current application is built.
Whether you want to locate the library objects in a PBD, EXE, or DLL
(locating them in a PBD is the default)
If you’re locating the objects in a PBD or DLL, then also specify whether
you want to create the PBD at the same time as the EXE for the current
application. This is the mechanism used to exclude common libraries you do
not want to create redundantly.
If you’re locating the objects in a PBD (p-code deliverable), the type of p-
code code and options selected at the application and/or project level are
applied.
If you’re locating the objects in a DLL (machine code deliverable), the
type of machine code and options selected at the application and/or
project level are applied. Although PowerBuilder lets you produce it,
machine code is not generally recommended for the following reasons:

Build times are excessive
Build- and run-time environments are less robust than p-code
Deliverables are much larger

In some instances there may be selected portions of an application that will
benefit from machine code. If that were the case, selecting to locate the PBL
objects in a DLL would occur in this step.
(PowerGen has a unique ability to select machine code or p-code on a PBL-
by-PBL basis.)

NOTES:
If you are building both 32-bit and 16-bit p-code versions of your program, keep
in mind that only the executables are affected. You would include all the PBL’s
for regeneration when building the first version and exclude the PBL’s from
regeneration when building the second version.
If a write-protected PBL is included in the library list, it must be excluded from
being regenerated (although it will still be used to resolve inheritance
dependencies). From a write-protected PBL you can create dynamic libraries.
If a PBD is included in the library list it must be excluded from being
regenerated and marked not to be created.

 PowerGen White Paper

 23

Step 7 Example

The screen displayed here shows the OE_MAIN library within the Order Entry
application. Creative Kids is including the objects in this PBL in the
regeneration and locating its objects in the PBD.

The list below shows the specifications Creative Kids will enter for each library
within each application in their PowerGen project.

PowerGen White Paper

24

Applications Libraries in List Include/Exclude

from Regen
Object

Location
Create

PBD now?

Order Entry oe_main.pbl Include PBD Yes

 oe_dlg.pbl Include PBD Yes

 oe_data.pbl Include PBD Yes

 oe_item.pbl Include PBD Yes

 utils.pbl Include PBD Yes

 com.pbl Include PBD Yes

 tabfold.pbl Include PBD Yes

 grid.pbl Include PBD Yes

Customer cr_main.pbl Include PBD Yes

Records cr_data.pbl Include PBD Yes

 cr_win.pbl Include PBD Yes

 utils.pbl Exclude PBD No

 com.pbl Exclude PBD No

 tabfold.pbl Exclude PBD No

 grid.pbl Exclude PBD No

Note that when common libraries and third party or class framework libraries
are specified within the Order Entry application, they are included in the regen
and are built with the other libraries in the application. They are excluded from
the regen (avoiding redundant regeneration) and not built when specified in the
Customer Records applications. This results in shorter build times and makes
the process more repeatable, since you are not performing the same step
(building common PBD’s) more then once.

 PowerGen White Paper

 25

Step 8: Specify Build Options and Define Log File Preferences

Build Options

Before you save your project and begin building each of the applications in it,
you can specify several build options. You may choose:

To optimize the PBL’s during the build. The default is not to optimize.
To check PBL’s for duplicate object names and report them in the build log
in the order in which they are found in the library list. This is the default.
To scan PBR’s for missing resources before attempting to rebuild PBD’s and
EXE’s. This eliminates the unwanted message dialog from being displayed
during a build. The default is not to scan.
To refresh the object list before building the project. The default is not to
refresh the list. If the contents of a library are changing while your
PowerGen project is open, using this option ensures that no objects are
missed during a build. The option setting information is saved in the
Registry.

You can also specify how you want the build process to flow when regeneration
errors occur during the current PowerGen session. The default is to build
EXE’s and libraries after regeneration errors and not to pause the build when an
error is encountered.
NOTE: These build options are preserved across PowerGen sessions and are
saved in the Registry.

Step 8 Example

Creative Kids has selected to optimize PBL’s when building applications and to
build EXE’s and libraries even if regeneration errors occur.

PowerGen White Paper

26

Define Log File Preferences

PowerGen’s log file is created by default, named POWERGEN.LOG, and is
located in the directory where the target application PBL is located.
Each time you build your entire application or any part of it, Synchronize PBL’s,
Bootstrap Import objects within selected applications, or export or import one or
more objects, new log messages are written to the log file, giving you an on-going
record of your progress. You may choose to have messages appended to an
existing log file or written to a new file based on the date and time.

Set your log file preferences by choosing Options → Log File. The default options
are to append the information about this build to the selected log file, to include
the regen times in the file, and to include the library list in the file.

Step 8 Example

At this point, Creative Kids has kept the default log file preference options.

When Creative Kids is in the final stages of testing their build, they might select
the “Show Regen Errors only” option, to target only those errors and abbreviate
the log file output as a result.

 PowerGen White Paper

 27

Step 9: Save the Information Needed to Build the Project

Now you’ve entered all the specific information needed to build your project
with PowerGen. Save this information by choosing Project → Save. PowerGen
will automatically save the information to the same project file you specified in
Step 3.

Step 10: Test the Build

Before actually building the entire project, test that the build works as you planned.
Make a backup copy of all your components before you begin testing, so if errors
occur you can restore all the elements properly.
To test the build, it’s recommended that you interactively test each application in the
list by:

1. Regenerating objects

1. Highlight the first application in the list and choose Application → Regenerate.
2. When the regeneration is completed, review PowerGen’s log file, looking

for errors and for an indication that all objects were re-generated once and
only once.

3. Then go into the PowerBuilder Library painter to check that everything
was regenerated correctly.

4. Once you’re satisfied that this aspect of the build works properly,
continue testing the application by optimizing the PBL’s.

2. Optimizing PBL’s

1. With the first application in the list still highlighted, choose Application
→ Optimize.

2. When optimized, check the directories to make sure that the
optimized PBL’s are smaller than they were before being optimized.
This operation saves the original in a backup file with the same name
as the original and a .bak extension.

3. Creating PBD’s

1. With the first application in the list still highlighted, choose Application
→ Create PBD’s.

2. When created, look for errors in PowerGen’s log file.
3. Check the directories to make sure that the PBD’s were created properly.
4. Once you’re satisfied that this aspect is working properly, continue

testing the application by creating the executable.

PowerGen White Paper

28

4. Creating EXE’s

1. With the first application in the list still highlighted, choose Application
→ Create EXE.

2. When created, look for errors in PowerGen’s log file.
3. Check the directory to make sure that the executable was created

properly. Make sure the EXE can be started with no errors. Check
that the desired icon is displayed with the EXE.

4. Once you’re satisfied that this aspect is working properly, continue
testing the application by repeating this process with each of the other
applications, in appropriate order.

When the individual applications have been tested, choose Project → Build All to
build the entire PowerGen project in a batch. Review the log file, looking for
errors and making sure that PBD’s and EXE’s were created.

Step 10 Example

The following is an excerpt from the log file created from regenerating the
objects in the “Order” application.

PowerGen Version 4.2
Log Started on 7/1/01 8:41:17am

Application:
order

Library List:
d:\ck\order\oe_main.pbl
d:\ck\order\oe_dlg.pbl
d:\ck\order\oe_data.pbl
d:\ck\order\oe_item.pbl
d:\ck\order\utils.pbl
d:\ck\order\com.pbl
d:\ck\order\tabfold.pbl
d:\ck\order\grid.pbl

Regenerating Objects in Inheritance Order

DataWindows
d_ord_codelist_values_unaggr d:\ck\order\oe_main.pbl
d_ord_codelist_values_aggr d:\ck\order\oe_main.pbl
d_ord_pane_attrib d:\ck\order\oe_dlg.pbl

 PowerGen White Paper

 29

Structures
str_pane_layout_object d:\ck\order\oe_dlg.pbl
str_pane_layout_font d:\ck\order\oe_dlg.pbl
str_pane_layout_color d:\ck\order\oe_dlg.pbl

Windows
w_ord_base_browser d:\ck\common\utils.pbl
 w_ord_codelist_browser d:\ck\order\oe_main.pbl
w_ord_codelist_export d:\ck\order\oe_main.pbl
w_ord_codelist_import d:\ck\order\oe_main.pbl
w_ord_codelist_import_create d:\ck\order\oe_main.pbl
w_ord_codelist_values_modify d:\ck\order\oe_main.pbl
w_ord_frame d:\ck\common\utils.pbl
Error C0019: Incompatible field ii_active_sheet_count—for type w_ord_frame at
line 25 of function wf_pop_sheet of object w_ord_frame
Line no: 25 Column no: 0
Error C0015: Undefined variable: i—at line 26 of function wf_pop_sheet of object
w_ord_frame
Line no: 26 Column no: 0
w_ord_page_layout_browser d:\ck\common\com.pbl
...
Log Ended on 7/1/01 8:45am

Based on the Log File preference options selected in the previous step, Creative
Kids’ log file lists all of the activities carried out in the build process, including
regeneration and PBD and EXE creation. Errors are listed with the object that
caused the error. The log output will also appear in the Output Window while
the build is running.

Step 11: Test the Resulting Components

Test all the deliverable components to make sure the build produced operational
applications.

PowerGen White Paper

30

Source Traceable Builds for PowerBuilder Applications: Step by
Step

PowerGen’s Bootstrap Import process lets you reproduce reliable releases from
a set of controlled source. Through an iterative process, the Bootstrap Import
first imports objects from which the cross-dependencies have been removed. In
subsequent iterations, it imports more and more of the body of the objects, until
they have all been completely restored in the PBL’s.
This methodology gives you a rigorous approach to source and release control,
since each application is “built from source” rather than relying on a set of
existing PBL’s. The methodology described here follows these steps:

Step 1: Get object source from your source control system and create PBL
subdirectories.
Step 2: Create an object list file (OLF) for each application.
Step 3: Delete the original PBL subdirectories.
Step 4: Set options to be applied during the Bootstrap Import
Step 5: Use PowerGen to Bootstrap Import each application’s objects.
Step 6: Proceed with PowerGen’s build process.

Step 1: Get Object Source from your Source Control System and Create
PBL Subdirectories

The first step in producing source traceable builds with PowerGen is to get the
object source from your source control system. It’s recommended that you
create a subdirectory for each PBL in the application and that you create the
subdirectory below the directory where the PBL itself is located. Once you’ve
created all the appropriate subdirectories, then place the associated objects for
the PBL into each of them.

Step 1 Example

Creative Kids has one Class Framework library, one set of in-house Common
Libraries, and two applications – Order Entry and Customer Records. They
create the following subdirectories for object source and place the appropriate
objects in them.

 PowerGen White Paper

 31

Note that the Common, Thrdprty, Order, and Customer directories contain the
existing PBL’s as well. In Step 3, these will be deleted so that PowerGen can
Bootstrap Import the new object source and create new PBL’s from it.

PowerGen White Paper

32

Step 2: Create an Object List File (OLF) for Each Application

An Object List File is a text file that associates the object source with a PBL in
the library list. Based on the library list, PowerGen automatically creates the
OLF for you, assuming that each PBL subdirectory is located below the
directory where the PBL is located. Use PowerGen to create an OLF for each
application you are going to build.
The OLF is a multi-line text file where each line has the format:

source_file_spec, target_PBL[, object_comments[, target_PBL_comments]]source_file_spec, target_PBL[, object_comments[, target_PBL_comments]]source_file_spec, target_PBL[, object_comments[, target_PBL_comments]]source_file_spec, target_PBL[, object_comments[, target_PBL_comments]]

Target PBL comments, if included, will appear as the comment string associated
with the PowerBuilder library. The object comments can be specified for each
object. If there are no object comments, the object_comments can be left blank,
but delimited by commas. The object comments and PBL comments can be
enclosed in quotes if the comments contain commas.

Step 2 Example

Creative Kids is building the Order Entry application first, and is including the
Class Framework and Common Library PBL’s in this application. PowerGen
creates an OLF for the Order Entry application that looks like this:

ORDER.OLF
d:\ck\order\oe_main*.sr*, d:\ck\order\oe_main\oe_main.pbl
d:\ck\order\oe_dlg*.sr*, d:\ck\order\oe_dlg\oe_dlg.pbl
d:\ck\order\oe_data*.sr*, d:\ck\order\oe_data\oe_data.pbl
d:\ck\order\oe_item*.sr*, d:\ck\order\oe_ item \oe_ item.pbl
d:\ck\common\utils*.sr*, d:\ck\common\utils\utils.pbl
d:\ck\common\com*.sr*, d:\ck\common\com\com.pbl
d:\ck\thrdprty\tabfold*.sr*, d:\ck\thrdprty\tabfold \tabfold.pbl
d:\ck\thrdprty\grid*.sr*, d:\ck\thrdprty\grid\grid.pbl

The OLF for the Customer Records application is shown below. Note that
the Class Framework and Common Library PBL’s are not included here, since
they are being created with the Order Entry application.

CUSTOMER.OLF
d:\ck\ customer\cr_data*.sr*, d:\ck\customer\cr_data\cr_data.pbl
d:\ck\customer\cr_main*.sr*, d:\ck\customer\cr_main\cr_main.pbl
d:\ck\ customer\cr_win*.sr*, d:\ck\customer\cr_win\cr_win.pbl

 PowerGen White Paper

 33

Step 3: Delete Libraries You Want to Recreate

In this step, PowerGen deletes the PBL’s you want to recreate. These are the
libraries you’ll be recreating during Bootstrap Import, so deleting them now
ensures that you’ll be reproducing the release from source.

Step 3 Example

Creative Kids now uses PowerGen to delete all libraries from the Common,
Thrdprty, Order, and Customer subdirectories. No PBL’s now exist, and each
subdirectory contains its associated object source.

PowerGen White Paper

34

Step 4: Set Options to be Applied During the Bootstrap Import

PowerGen lets you specify a variety of import options, such as the format of
your source PBL’s and whether to write temporary files during the Bootstrap
Import, to regenerate all objects after the last Import phase, and to register
objects for source control after the import.
 Import files are normally in the same syntax as if they were exported from
PowerBuilder, with header information that describes the object’s name, type,
and comments, followed by the source code for the object.
 $PBExportHeader$w_mywindow_info.srw$PBExportHeader$w_mywindow_info.srw$PBExportHeader$w_mywindow_info.srw$PBExportHeader$w_mywindow_info.srw

$PBExportComments$Co$PBExportComments$Co$PBExportComments$Co$PBExportComments$Comments for my windowmments for my windowmments for my windowmments for my window
In some versions of PowerBuilder, the SCC API source control interface strips
the $PBHeader information from the object source before saving in the source
control system. For this reason, PowerGen allows you to use import files with
this syntax variation.
By default, PowerGen automatically detects whether or not the $PBHeader…
lines are included at the beginning of external object source file and
automatically imports the appropriate syntax. This allows you to import files
without having to examine the source files and to import files with and without
headers in the same import function.
You may also choose to write temporary files to disk during the Bootstrap
Import. PowerGen creates temporary objects that are imported in the process of
constructing the libraries from scratch. This is required to avoid conflicts
caused by unresolved references between two objects. As an aid in diagnosing
problems in the Bootstrap Import process, these temporary objects can be saved
to disk.
PowerGen automatically regenerates all the objects after the last iteration of the
Bootstrap Import has been completed. You may disable this feature.
And finally, you may choose to have PowerGen automatically register objects
for source control once Bootstrap Import is completed.

 PowerGen White Paper

 35

Step 4 Example

Creative Kids is keeping the defaults to automatically detect
$PBHeader…information and to regenerate objects after the last Bootstrap
Import phase. They are also requesting PowerGen to automatically register the
objects for source control when Bootstrap Import is completed.

PowerGen White Paper

36

Step 5: Use PowerGen to Bootstrap Import Each Application’s Objects

To begin the Bootstrap Import process, choose Application → Bootstrap Import,
and select the OLF for the first application you want to build.
PowerGen then begins the Bootstrap Import process, displaying the results in
an output window and stored in the specified log file for the current project.

Step 5 Example

Creative Kids first Bootstrap Imports objects in the Order application.

And then views the results in the Output Window. In the early phases of the
import errors may appear in the log; these may be ignored. The final error total
will only include errors encountered in the final phase.

 PowerGen White Paper

 37

Creative Kids then Bootstrap Imports the Customer application and views the
results in the Output Window as well.
At the conclusion of this process, PowerGen’s application list looks identical to
its appearance before Bootstrap Importing, but now the libraries listed are
populated with source.

PowerGen White Paper

38

Step 6: Proceed with PowerGen’s Build Process

With all PBL’s in all your applications now populated with source, you’re ready
to proceed with PowerGen’s build process.

If you have already specified the executable path, support files, regen
information, code generation information, PBL information, and build
options for your applications (Steps 4 through 8 in the Step-by-Step Build
Process described previously), then you would now proceed to testing the
build (Step 9).
If you haven’t previously specified this information, then proceed with the
PowerGen build process at Step 4.

 PowerGen White Paper

 39

Synchronization of PowerBuilder Applications to Source Control:
Step by Step

PowerGen’s “Synchronization” process lets you refresh your application PBLs
from a set of controlled source. The Synchronization process selects which
objects required updating or deletion and identifies new objects to be added to
the PBLs. Like Bootstrap Import, Synchronization first imports objects from
which the cross-dependencies have been removed. In subsequent iterations, it
imports more and more of the body of the objects, until they have all been
completely restored in the PBL’s. Because it only deals with changes to PBL’s,
Synchronization runs in a fraction of the time that Bootstrap Import runs.
This methodology gives you a rigorous approach to maintaining development
PBLs in sync with objects in source control. The methodology described here
follows these steps:

Step 1: Get object source from your source control system and create PBL
subdirectories.
Step 2: Create an object list file (OLF) for each application.
Step 3: Set options to be applied during Synchronization.
Step 4: Use PowerGen to Synchronize each application’s objects.
Step 4: Proceed with PowerGen’s build process.

Step 1: Get Object Source from your Source Control System and Create
PBL Subdirectories

The first step in the source and release control process with PowerGen is to get
the object source from your source control system. It’s recommended that you
create a subdirectory for each PBL in the application and that you create the
subdirectory below the directory where the PBL itself is located. Once you’ve
created all the appropriate subdirectories, place the associated objects for the
PBL into each of them.

Step 1 Example

Creative Kids has one Class Framework library, one set of in-house Common
Libraries, and two applications – Order Entry and Customer Records. They
create the following subdirectories for object source and place the appropriate
objects in them.

PowerGen White Paper

40

Note that the Common, Thrdprty, Order, and Customer directories contain the
existing PBL’s as well. These will be Synchronized with the updated source
files.

 PowerGen White Paper

 41

Step 2: Create an Object List File (OLF) for Each Application

An Object List File is a text file that associates the object source with a PBL in
the library list. Based on the library list, PowerGen automatically creates the
OLF for you, assuming that each PBL subdirectory is located below the
directory where the PBL is located. Use PowerGen to create an OLF for each
application you are going to build.
The OLF is a multi-line text file where each line has the format:
source_file_spec, target_PBL[, object_comments[, target_PBL_comments]]source_file_spec, target_PBL[, object_comments[, target_PBL_comments]]source_file_spec, target_PBL[, object_comments[, target_PBL_comments]]source_file_spec, target_PBL[, object_comments[, target_PBL_comments]]

Target PBL comments, if included, will appear as the comment string associated
with the PowerBuilder library. The object comments can be specified for each
object. If there are no object comments, the object_comments can be left blank,
but delimited by commas. The object comments and PBL comments can be
enclosed in quotes if the comments contain commas.

Step 2 Example

Creative Kids is Synchronizing the Order Entry application first, and is
including the Class Framework and Common Library PBL’s in this application.
PowerGen creates an OLF for the Order Entry application that looks like this:

ORDER.OLF
d:\ck\order\oe_main*.sr*, d:\ck\order\oe_main\oe_main.pbl
d:\ck\order\oe_dlg*.sr*, d:\ck\order\oe_dlg\oe_dlg.pbl
d:\ck\order\oe_data*.sr*, d:\ck\order\oe_data\oe_data.pbl
d:\ck\order\oe_item*.sr*, d:\ck\order\oe_ item \oe_ item.pbl
d:\ck\common\utils*.sr*, d:\ck\common\utils\utils.pbl
d:\ck\common\com*.sr*, d:\ck\common\com\com.pbl
d:\ck\thrdprty\tabfold*.sr*, d:\ck\thrdprty\tabfold \tabfold.pbl
d:\ck\thrdprty\grid*.sr*, d:\ck\thrdprty\grid\grid.pbl

The OLF for the Customer Records application is shown below. Note that
the Class Framework and Common Library PBL’s are not included here, since
they are being Syncrhonized with the Order Entry application.

CUSTOMER.OLF
d:\ck\ customer\cr_data*.sr*, d:\ck\customer\cr_data\cr_data.pbl
d:\ck\customer\cr_main*.sr*, d:\ck\customer\cr_main\cr_main.pbl
d:\ck\ customer\cr_win*.sr*, d:\ck\customer\cr_win\cr_win.pbl

PowerGen White Paper

42

Step 3: Set Options to be Applied During the Synchronization

PowerGen lets you specify a variety of import options, such as the format of
your source PBL’s and whether to write temporary files during the
Synchronization, to regenerate all objects after the last Import phase, and to
register new objects for source control after the Synchronization.
Import files are normally in the same syntax as if they were exported from
PowerBuilder, with header information that describes the object’s name, type,
and comments, followed by the source code for the object.
 $PBExportHeader$w_mywind$PBExportHeader$w_mywind$PBExportHeader$w_mywind$PBExportHeader$w_mywindow_info.srwow_info.srwow_info.srwow_info.srw

$PBExportComments$Comments for my window$PBExportComments$Comments for my window$PBExportComments$Comments for my window$PBExportComments$Comments for my window
In some versions of PowerBuilder, the SCC API source control interface strips
the $PBHeader information from the object source before saving in the source
control system. For this reason, PowerGen allows you to use import files with
this syntax variation.
By default, PowerGen automatically detects whether or not the $PBHeader…
lines are included at the beginning of external object source file and
automatically imports the appropriate syntax. This allows you to import files
without having to examine the source files and to import files with and without
headers in the same import function.
You may also choose to write temporary files to disk during the
Synchronization. PowerGen creates temporary objects that are imported in the
process of constructing the libraries from scratch. This is required to avoid
conflicts caused by unresolved references between two objects. As an aid in
diagnosing problems in the Synchronization process, these temporary objects
can be saved to disk.
PowerGen automatically regenerates all objects after the last iteration of the
Synchronization has been completed. You may disable this feature.
You may choose to have PowerGen automatically register new objects for
source control once Synchronization is completed.
When a new object is added to a PBL during Synchronization, the default is for
PowerGen to automatically mark it as Registered.
You may choose to have the Synchronize function delete objects from the
PBL’s that do not have corresponding source files. If objects are deleted,
PowerGen will attempt to regenerate the objects that referenced the deleted
objects.

 PowerGen White Paper

 43

The Synchronization function compares the object source in the PBL and the
source in the object source file in order to determine which objects have
changed. The comparison can be selected as either an exact match or as one in
which blank lines are ignored. Blank lines are commonly added or removed
when PowerBuilder imports or exports an object. These lines have no effect on
the object’s function so can safely be ignored. This is the default.

Set Log File Options for Synchronization

PowerGen lets you specify whether you want the log file, when displaying
Synchronization information, to show only the objects that have been modified
(i.e., added, deleted, or imported) because a change was detected. Choose this
option by selecting Options → Log File and then making the appropriate selection
at the bottom of the Log File Save As dialog.
You would most likely not choose this option initially, but later when fewer
errors are likely to be encountered.

Step 3 Example

Creative Kids is keeping the defaults to automatically detect
$PBHeader…information and to regenerate objects after the last
Synchronization phase. They are also requesting PowerGen to automatically
register the objects for source control when Synchronization is completed, to
register new objects for source control, to delete PBL objects not synchronized,
and to ignore blank lines in comparison.

PowerGen White Paper

44

Because Creative Kids does not want the log file to show only Synchronize
differences, they do not need to open the Log File options and make any
changes there.

 PowerGen White Paper

 45

Step 4: Use PowerGen to Synchronization Each Application’s Objects

To begin the Synchronization process, choose Application → Synchronize, and
select the OLF for the first application you want to build.
PowerGen then begins the Synchronization process, displaying the results in an
output window and stored in the specified log file for the current project.

Step 4 Example

Creative Kids first Synchronizes objects in the Order application.

And then views the results in the Output Window. In the early phases of the
import errors may appear in the log; these may be ignored. The final error total
will only include errors encountered in the final phase.

PowerGen White Paper

46

Creative Kids then Synchronizes the Customer application and views the results
in the Output Window as well.

Step 5: Proceed with PowerGen’s Build Process

With all PBL’s in all your applications now Synchronized, you’re ready to
proceed with PowerGen’s build process.

If you have already specified the executable path, support files, regen
information, code generation information, PBL information, and build
options for your applications (Steps 4 through 8 in the Step-by-Step Build
Process described previously), then you would now proceed to testing the
build (Step 9).
If you haven’t previously specified this information, then proceed with the
PowerGen build process at Step 4.

