
6 PBDJ JUNE 2006 www.SYS-CON.com/PBDJ

PRODUCT REVIEW

We discovered PowerGen when we were
looking for a command line utility
for importing objects into Power-

Builder. At the time (PowerBuilder V5.0) we
were struggling with a source control system
whose SCC-API interface was having all kinds
of trouble with PowerBuilder (as most source
control systems did at the time). As a result
we cobbled together our own check-in/check-
out utility using PowerGen’s command line
operations.

 In the course of that exercise we invited the
vendor, E. Crane Computing, to come to our
offices and make a PowerGen presentation.
What we found out, of course, is that importing
objects was just a sideline of PowerGen’s major
strength of automating the entire build process
for PowerBuilder applications. We’ve been using
PowerGen ever since and it’s a staple in our
environment.

What is PowerGen?
 Since its first release PowerGen has been
focused exclusively on automating the build
process for PowerBuilder applications. First
released for PowerBuilder V4, it has allowed for
a consistent build methodology through all suc-

ceeding PB versions.
 It has two major functions. The first is
producing PB deliverables from PBLs. To do
this it offers regeneration, PBD and DLL cre-
ation, and EXE creation. To support the users’
complete automation requirements it also
includes, copy, import, export, and optimize
functions. With a separate utility VersionEdit,
delivered with PowerGen, it can also modify
version resource information. (VersionEdit
also works with any standard Windows execut-
able such as EXE and DLL.)
 The second major function is producing
PBLs from source objects. Starting with only the
PB objects in their *.sr* exported source format,
PowerGen can create PBLs and repopulate
them with their constituent objects. First
introduced for PB 5.0, this function is called
Bootstrap Import (a term since appropriated
by other products). It allows “source traceable
builds,” an essential element of a good Software
Configuration Management (SCM) process. It
also lets you maintain only object-level source
in your Source Control system, without resort-
ing to versioning PBLs, which was never a good
practice.
 A sister function of the Bootstrap Import,
the Synchronize function, will update a set of

PBLs with modified source. In the Synchronize
function PowerGen examines each object in the
PBL and compares it with the exported source.
It updates the object in the PBL only if it’s
changed. It also adds new objects, represented
in export files, but not present in the PBL, and
removes objects that exist in the PBL, but have
no corresponding source. The advantage of the
Synchronize function over the Bootstrap Im-
port is that the Synchronize function is usually
an order of magnitude faster.

The PowerGen ‘Project’
 A PowerGen project consists of one or more
PB applications.
 New projects are created from existing PB
applications defined in Targets, Workspaces,
and PB.INI files. A project can also be created
by choosing the application PBL and adding the
libraries individually.
 When presented in the PowerGen’s GUI, the
applications in the project are shown in the top
list and the PBLs in the selected application are
shown in the bottom list. Note that the paths
used in the project can be specified as “rela-
tive paths.” This allows for greater portability
between specific build environments.
PowerGen provides a lot of control for the build
process. Each PBL is marked as included or
excluded from the regeneration process. This
has proven efficient for applications sharing
PBLs, because the shared PBLs are regener-
ated the first time they appear and are then
subsequently just referenced in the library list.
This saves time in the build. Likewise PBDs or
DLLs can be created selectively for each PBL,
avoiding redundant operations. Each PBL can

WRITTEN BY
AL SOUCY

The proven workhorse for
PowerBuilder build automation

FIGURE 1 | A POWERGEN PROJECT

PowerGen
by E. Crane Computing

8 PBDJ JUNE 2006 www.SYS-CON.com/PBDJ

PRODUCT REVIEW

be turned into its own PBD or its objects can be included with the EXE.
Another useful feature is that PowerGen will relocate the deliverables,
PBDs/DLLs/EXE to a specified directory. Finally, as part of the build
process PowerGen can, optionally, optimize the PBLs.
One capability unique to PowerGen is that it can create a mix of PBDs
and DLLs for a single application. Although DLLs (machine code) haven’t
been widely used, there are cases where specific functions in an applica-
tion will benefit. If those functions are confined to just one or a few PBLs
then PowerGen can create DLLs for just those PBLs. This functionality
provides an opportunity to optimize the delivery environment without
unduly burdening the build environment.
 The project is saved as a separate file with a .gen extension. The file is
ASCII and is fully documented with the understanding that users may
want to modify or create their projects programmatically. Although the
information saved in the project file has been expanded through the
various releases of PowerGen, each new PowerGen version can open any
previous version’s projects. See Listing 1.
Most of PowerGen’s options are saved in the project file although a few
are saved in the registry. The ones saved in the registry are judged to be
more germane to the build environment than a specific project. For ex-
ample, the option of whether the resulting PB applications exhibit “New
Visual Styles” is saved in the Registry.

Command Line and GUI
 All of PowerGen’s functions can operate from the GUI or the command
line. PowerGen 1.0 (for PB4) was delivered with a command line interface
and it has been maintained in compatible form to the current release
V6.5 (supporting PB5 through 10.5).
The priority of compatibility in the command line syntax means that a
PowerGen script written for PowerGen 1.0 will operate without change
with PowerGen 6.5.
 The command line syntax generally consists of “switches” introduced
by a slash (/) with parameters separated by spaces. Command lines can
be simple. For example, Pwrgn105.exe /A=Examples.gen will build all of
the applications defined in the project, Examples.gen. This means it will
regenerate the PBLs and create PBDs and EXEs as defined in the project.
 Note that the name of the PowerGen EXE corresponds to the version of
PB that you’re using; Pwrgn105.exe corresponds to PB10.5.
 A more complicated example is:

Pwrgn105.exe /K=Examples.gen /PBG /P=PBExamfe.pbl /RP /L=Example.log
/A=Example

 This command line synchronizes an individual PBL, PBExamfe.pbl in

the example application defined in the project file, Examples.gen. The
/PBG switch indicates that the synchronize function should use the cor-
responding PBG file, PBExamfe.pbg, to get information about the objects
that belong in the PBL. The /RP switch specifies doing a full regeneration
following synchronization and the /L parameter names the file where the
output log is saved.
 PowerGen signals a failure from a command line operation by writing a
file containing an error code. Scripts can be branch-based in the absence
or existence of the file. For example:

If Exist Power1.err Goto ERROR
(next operation)
Goto END
:ERROR
Echo Error Building Examples
:END

 You can see the scripts that we use at NH-DHHS on the E. Crane Web
site on their support pages, http://ecrane.com/scripts.htm.

The Output Log
 PowerGen displays detailed output in a scrollable window, while the
operation is running.
 The log shows information about the environment (versions), the
application being processed, and then about every detail of the build.
Details can be customized to add or subtract information. The logs are
sufficiently complete to meet all audit and compliance requirements.
 Any error, either in configuration or in a particular operation, is written
in a red font and summarized at the end of the log. This diagnostic infor-
mation is especially important when configuring a build for the first time.
At the same time that the GUI is presenting PowerGen’s output, a log
file is written with the same information. There are many options as to
how and where this log is written. For example, PowerGen can generate
a name for the file that corresponds to the starting time and date of the
operation.

Bootstrap Import
 PowerGen first introduced the Bootstrap Import for PB V5.0. Its pur-
pose is to rebuild an application completely from just the exported object
syntax (*.sr* files). So PowerGen enabled source traceability in our SCM
processes long before it was possible with PB.
Later this became a critical issue for PB8.0 when PB’s source control
architecture changed and there were no longer “registered” PBLs to use
for a build. As soon as PowerGen offered the Bootstrap Import we chose
to use it rather than rely on the registered PBLs, because it wasn’t possible
to verify the contents of those PBLs.
 PowerGen’s Bootstrap Import uses a three-phase import process. In the
first phase global types and basic object signatures are established. In the
later phases the complete object information is added back in. This progres-
sive import is required to avoid fatal errors caused by a fully formed object
that may contain many references to objects that haven’t been imported. The
finesse required to import selected parts of an object in successive phases
requires an automated method. Attempting to do it by importing complete
objects (which we tried), even in a carefully selected order, is futile.
 Because PowerGen introduced the Bootstrap Import in an early ver-
sion of PB, it has had to deal with several interesting issues.
Until PB8.0 was released there was no information available about which
objects belonged in which PBLs. Obviously this was essential informa-
tion for rebuilding PBLs from object sources. So PowerGen introduced
the Object List File (OLF) that provided the mapping between object files
and PBLs. There are two forms of the OLF. In one all of the objects are
enumerated along with their corresponding PBL:FIGURE 2 |

10 PBDJ JUNE 2006 www.SYS-CON.com/PBDJ

PRODUCT REVIEW

.\Code Examples\Example App\pbexbm\benchmark.sra,.\Code Examples\Example
App\pbexbm.pbl,”Comment”
.\Code Examples\Example App\pbexbm\d_benchmark_report.srd,.\Code Examples\Ex-
ample App\pbexbm.pbl
.\Code Examples\Example App\pbexbm\d_dddw_cust.srd,.\Code Examples\Example
App\pbexbm.pbl
Etc.

 In this form each line contains two-four comma-separated pa-
rameters. The first names the object file, the second the PBL, and the
optional third and fourth the object comments and PBL comments
respectively.
 In the second form the object file names can include a wild card:

.\Code Examples\Example App\pbexbm*.sr?,.\Code Examples\Example App\pbexbm.
pbl,”Comment”

 In this form every file with an *.sr* form in the pbexbm subdirectory
will be included in the PBL.
 OLF’s (and PBGs) can be created automatically by PowerGen, with
many options to specify directory configurations for the source files,
which form to use, whether or not to include comments, etc.
 We’ve organized our source control repository to have a separate
folder for the sets of objects for each PBL. This lets us use the OLF wild
card form and not worry about whether an enumerated list is accurate.
In other words, we’re letting the source control structure dictate the PBL
configuration. I think it’s a better SCM practice than relying on a list that
has to be maintained outside of the source control system. Even PB’s PBG
file, introduced in PB8, which provides the mapping function, is prone to
be inaccurate.
 Another issue arose from supporting older versions of PB. In versions
of PB before V7.0 the “headers” of object source files, those lines begin-
ning with $PBHeader and $PBComments, were removed from the source
file when it was added to the source control. That meant that the com-
ments were lost and that the object name and type had to be determined
from the PBScript syntax rather than the header information. Comments
are saved in the OLF files as optional parameters.

PowerGen versus ORCAScript
 We’ve examined the use of ORCAScript for our build automation. OR-
CAScript is a command line-only utility that started shipping with PB 9.0
for automating build procedures.
We quickly decided to stick with PowerGen for several reasons.
 We have a fully automated process, based on PowerGen, that operates

flawlessly. And the process hasn’t required any changes through all the
versions of PB and PowerGen that we’ve used. As the adage goes, don’t fix
what isn’t broken.
 ORCAScript is only available for PB 9.0 and later. We need support for
earlier versions.
 ORCAScript doesn’t provide enough detail in its output to diagnose
build or configuration problems easily. Many of its error messages are
difficult to interpret.
 We’ve experienced cases where ORCAScript couldn’t complete a build
successfully (and PowerGen could).
 ORCAScript is a command line-only interface. We find it far more pro-
ductive, using PowerGen, to have a GUI that we can use to prototype our
build procedures and then easily translate to a script.

Our Experience
 We develop and maintain 40 PowerBuilder applications at New
Hampshire’s Department of Health and Human Services. The applica-
tions are used extensively in our welfare and health services delivery
agencies. Example applications are for child-care licensing and managing
adult and elderly care. Throughout the state the applications are used by
hundreds of users.
 Using PowerGen we have defined a process that includes a full Boot-
strap Import and build whenever an application version is promoted to
system integration testing and user acceptance testing. We use AllFusion
Harvest from CA for our software configuration management tool and
have versioned our PowerBuilder applications at the object level since we
adopted PowerGen. When we’re ready to release a version to test we “get”
the labeled objects from Harvest and then run PowerGen scripts that
completely automate the import and build process.
 We’ve been using PowerGen at NH-DHHS for eight years. During that
time it’s saved thousands of man-hours and delivered a consistent high-
quality result.
 And, because of the importance given to compatibility between Pow-
erGen versions (and an initially well-conceived design) we haven’t had to
change our build process through all the versions of PowerBuilder that
we’ve used. In and of itself this has been a huge timesaver and has let us
remain very confident in the quality of our build procedures.

AUTHOR BIO
Al Soucy is software configuration manager at New Hampshire’s Department of
Health and Human Services. In that role Al manages software configuration for
dozens of PowerBuilder applications as well as applications written in Java, .NET,
and COBOL (yes, COBOL).

LISTING 1

$PowerGenVersion=10
$ProjectName=””,”..\..\..\Code Examples\Example App\powergen.log”,1,””
$DefaultApplication=””
$DefaultLibrary=””
$ApplicationName=”examples”,0,0,0,0,0,0,1
$ApplicationLibrary=”\Code Examples\Example App\pbexamfe.pbl”,0
$EXEPath=”\Code Examples\Example App\examples.exe”,””,1,0
$ICOPath=””
$PBRPath=””
$PBDPath=””,0,0
$SourceControl=””,””,””,””,1,0
$Library=”\Code Examples\Example App\pbexamfe.pbl”,””,0,2,0,”\Code Examples\
Example App\pbexamfe.pbg”
$Library=”\Code Examples\Example App\pbexamw3.pbd”,””,0,2,0,”\Code Examples\
Example App\pbexamw3.pbg”

$Library=”\Code Examples\Example App\pbexamd2.pbl”,””,0,2,0,”\Code Examples\
Example App\pbexamd2.pbg”
$Library=”\Code Examples\Example App\pbexamfn.pbl”,””,0,2,0,”\Code Examples\
Example App\pbexamfn.pbg”
$Library=”\Code Examples\Example App\pbexammn.pbl”,””,0,2,0,”\Code Examples\
Example App\pbexammn.pbg”
$Library=”\Code Examples\Example App\pbexamuo.pbl”,””,0,2,0,”\Code Examples\
Example App\pbexamuo.pbg”
$Library=”\Code Examples\Example App\pbexamw1.pbl”,””,0,2,0,”\Code Examples\
Example App\pbexamw1.pbg”
$Library=”\Code Examples\Example App\pbexamw2.pbl”,””,0,2,0,”\Code Examples\
Example App\pbexamw2.pbg”
$Library=”\Code Examples\Example App\pbexamd1.pbl”,””,0,2,0,”\Code Examples\
Example App\pbexamd1.pbg”
$Library=”\Code Examples\Example App\pbexamsa.pbl”,””,0,2,0,”\Code Examples\
Example App\pbexamsa.pbg”
Figure 2 – A PowerGen Project File

SPARK NEW
DEVELOPMENT
WITH POCKETBUILDER

TM

Build and deploy your applications in days
or hours, and provide users with real-time data
wherever they are. Sybase’s Award Winning RAD
(Rapid Application Development) 4GL IDE
for Windows Mobile Smart Client Development
provides a patented DataWindow® development
environment, and provides mobile synchronization
with MobiLink technology. PocketBuilder
supports SMS, Phone, Smartphone, Pocket PC,
GPS Receivers, Digital Cameras, Biometric
and Bar Code Scanners and supports printing
to mobile printers.

Enough to spark your imagination?
Learn more at sybase.com/pocketbuilder

©
Co

py
rig

ht
20

05
Sy

ba
se

,I
nc

..
Al

lr
ig

ht
s

re
se

rv
ed

.

